

Apport de l'échographie pulmonaire dans le quotidien du pneumopédiatre

Céline Delestrain (Créteil) 20/11/2020

• Pas de conflit d'intérêt

Sémiologie échographique bien décrite

1946 1980 1986 1997

Pleural effusion

Dénier A .Presse Med . 1946 ; 22 : 307 - 308

Joyner CR Jr. JAMA . 1967 ; 200 (5): 399 - 402

Explorations masse médiastinales Haller JO. Sonographic evaluation of the chest in infants and children. AJR Am J Roentgenol. 1980.

Syndrome alvéolaire Weinberg B. The air bronchogram: sonographic demonstration. AJR Am J Roentgenol. 1986

Pneumothorax Rantanen NW. Diseases of the thorax. Vet Clin North Am Equine Pract. 1986

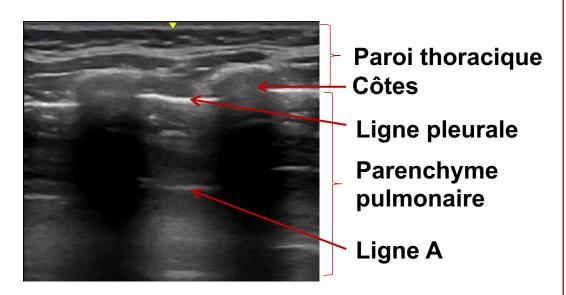
Syndrome alvéolo-interstitiel

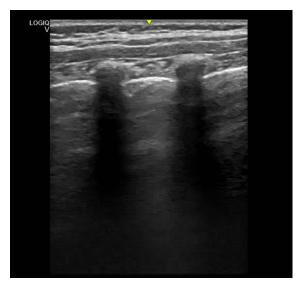
Lichtenstein D. The comet-tail artifact. An ultrasound sign of alveolar-interstitial syndrome. Am J Respir Crit Care Med. 1997

Applications de l'échographie pulmonaire en pédiatrie

TABLE 1 Current Accepted POCUS Applications for EM or Pediatric EM and Potential POCUS Applications for PHM⁸⁻¹⁰

System	Accepted POCUS Applications for EM/Pediatric EM	Potential POCUS Applications for PHM
Lung	Pneumothorax	Pneumothorax
	Hemothorax	Pneumonia
	Pneumonia	Pleural effusion, empyema
	Pleural effusion, empyema	Bronchiolitis or viral pneumonia
	Bronchiolitis or viral pneumonia	
	Interstitial pathology	

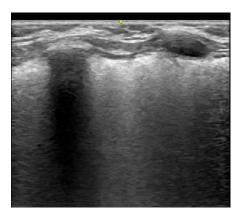

Recommandations européennes du « POCUS Working group »


12.	POCUS is helpful to distinguish between respiratory distress syndrome (RDS) and transient tachypnoea of the neonate (TTN)	Agreement	В
13.	POCUS is helpful to detect pneumonia in neonates and children	Agreement	В
14.	POCUS is helpful to semi-quantitatively evaluate lung aeration and help the management of respiratory intervention in acute respiratory distress syndrome (ARDS) in neonates and children	Agreement	В
15.	POCUS is helpful to recognise meconium aspiration syndrome (MAS)	Agreement	C
16.	POCUS is helpful for descriptive purposes in viral bronchiolitis but cannot provide a differential aetiological diagnosis	Strong agreement	C
17.	POCUS is helpful to accurately detect pneumothorax in neonates and children	Strong agreement	В
18.	POCUS is helpful to insert chest tube or perform needle aspiration in neonatal tension pneumothorax	Strong agreement	В
19.	POCUS is helpful to detect pleural effusions in neonates and children	Strong agreement	В
20.	POCUS is helpful to guide thoracentesis in neonates and children	Strong agreement	В
21.	POCUS is helpful to evaluate lung oedema in neonates and children	Agreement	C
22.	POCUS is helpful in detecting anaesthesia-induced atelectasis in neonates and children	Agreement	C

Paediatric and Neonatal

Intensive Care

Que peut-on voir en échographie thoracique?

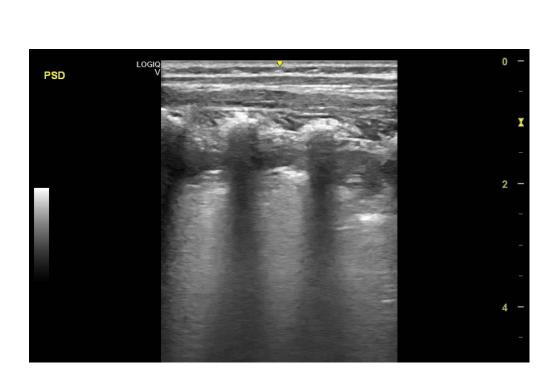

Anomalie de la cavité pleurale

Anomalie du parenchyme pulmonaire

Anomalie du Diaphragme

L'échographie pulmonaire dans la pneumonie chez l'enfant

- > 3 Méta-analyses pédiatriques
- > Critère de jugement principale: Se et Sp de l'échographie pulmonaire dans le diagnostic de pneumonie


Auteurs/ Année	Origine	Nb patie nts	Design études	Critères diagnostique pneumonie	LUS+	Se (%)	Sp (%)	RV+	RV-	
Pereda et al. 2015	Américaine	765	Prospective 1 Multicentrique	Clinique + Rxt +/- bio (CR seul: 3)	Condensations +/- sd interstiti	iel 96	93	15.3	0.06	
Balk et al. 2018	Américaine	1510	Prospective (n=9) Rétrospective (n=3)	Clinique +/- Rxt et TDM	Condensations +/- Bronchogramme +/- 1 critères -Anomalie de la ligne pleurale -Epanchement pleural -Sd interstitiel focal		95.3	- = 86 8	- %: Sn:	- 98 2%
						oc ac ia	1 (/ ()	00,0	70, O P	- 30, 2 /0
Orso et al. 2018	Italienne	2612	Prospective (n=15) Rétrospective (n=2)	Hétérogène+++ Clinique et/ou Rxt et/ou TDM	Condensations +/- bronchogramme Sd interstitiel localisé	94	94			

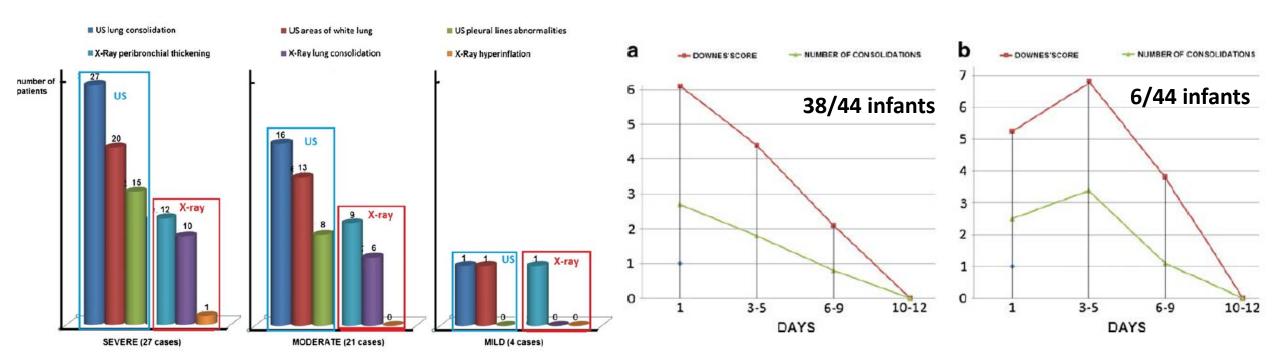
Non expert: Se= 95% et Sp=91% (expert: Se= 97% et Sp=99%)

Cas clinique n°1

1 an, fièvre depuis 4 jours + toux + insuffisance respiratoire aiguë. Syndrome inflammatoire biologique important

=> Pneumonie hypoxémiante

Coupe longitudinale



Coupe Intercostale

L'intérêt de l'échographie pulmonaire dans la bronchiolite

- > L'échographie pulmonaire permet d'identifier des lésions pulmonaires non identifiées par la radiographie pulmonaire
- > Bonne corrélation entre la sévérité clinique et le nombre de condensations échographiques

Etude prospective de 52 nourrissons (<16 mois) admis pour bronchiolite

Echographie pulmonaire et recours à l'O2 dans la bronchiolite

- > Bonne corrélation entre la gravité clinique et l'oxygénodépendance et :
 - > l'étendue du syndrome interstitiel dans les régions postérieures
 - ➤ la profondeur des condensations sous-pleurales (+/- 1 cm)

Table 4 Quantitative classification of echographic interstitial syndrome between the different groups: clinically mild bronchiolitis vs. moderate-severe bronchiolitis; infants in need of oxygen supplementation vs infants in no need of oxygen supplementation

LUS data	Mild	Moderate	χ^2	p	Oxygen	Oxygen	χ^2	Р
		Severe	test		No	Yes	test	
Less than 6 bilaterally involved intercostal spaces in the posterior and paravertebral	61/76	3/30	44.3	0.00	61/77	3/29	41.7	0.00
area of the lung	(80 %)	(10 %)			(79 %)	(10 %)		
6 to 12 bilaterally involved intercostal spaces in the posterior and paravertebral area of	15/76	18/30	16.2		16/77	17/29	14	0.00
the lung	(20 %)	(60 %)		0.00	(21 %)	(59 %)		
Up to 12 bilaterally involved intercostal spaces, in the posterior and paravertebral area	0/76	9/30	24.9	0.00	0/77	9/29	26.1	0.00
of the lung	(0 %)	(30 %)			(0 %)	(31 %)		

Table 5 Subpleural lung consolidation in the posterior area of the lung between the different groups: clinically mild bronchiolitis vs. moderate-severe bronchiolitis; infants in need of oxygen supplementation

LUS data	Mild	Moderate	χ ²	p	Oxygen	Oxygen	χ ²	Р
		Severe	test		No	Yes	test	
No presence of subpleural lung consolidations	53/76	5/30	24.4	0.00	53/77	5/29	22.6	0.00
in the posterior and paravertebral area of the lung	(70 %)	(17 %)			(69 %)	(18 %)		
Subcentimetersubpleural lung consolidations in the	20/76	12/30	1.9	0.16	20/77	12/29	2.3	0.1
posterior and paravertebral area of the lung	(26 %)	(40 %)			(26 %)	(41 %)		
Subpleural lung consolidation of 1 cm or more in the	3/76	13/30	26.4	0.00	4/77	12/29	21.5	0.00
posterior and paravertebral area of the lung	(4 %)	(43 %)			(5 %)	(41 %)		

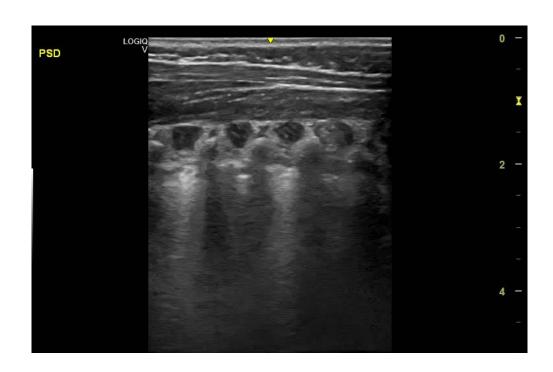
Echographie pulmonaire: outil prédictif du recours à un support ventilatoire dans la bronchiolite?

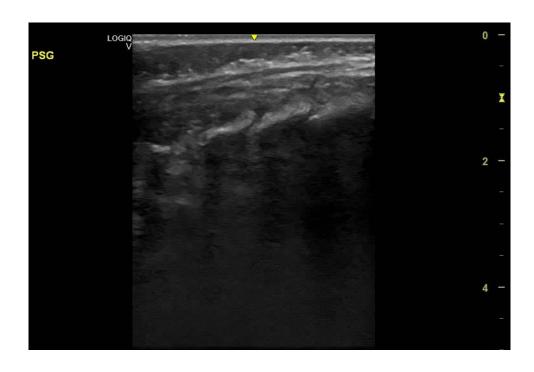
Etude prospective multicentrique de 145 nourrissons (<6 mois) admis pour bronchiolite

TABLE 4 Lung ultrasound score

	RR ^a (CI95%)	P-value	Coefficient	SE ^b	Score
Age <1 month	1.5 (1-2.3)	0.053	0.423	0.219	1.5
>3 B lines per ICS ^c bilateral (anterior area)	1.6 (1-2.5)	0.032	0.484	0.226	1.5
Confluents B line bilateral (anterior area)	1.4 (1-2.1)	0.046	0.37	0.185	1
Posterior consolidations <1 cm	1.3 (0.8-2.2)	0.27	0.285	0.259	1
Posterior consolidations >1 cm	2.5 (1.6-4)	<0.001	0.922	0.239	3
WDF ^d score ≥6 points	2.2 (1.5-3.2)	<0.001	0.799	0.186	2.5

TABLE 5 Predictive values for non POCUS predictors and for lung ultrasound score


	Sensitivity	Specificity	PPV ^c	NPV ^d	FP ^e	FN ^f
WDF ^a score >6 points	56.1 (43.3-68.2)	85.9 (76.9-91.7)	72.7 (58.2-83.7)	74.5 (65.0-82.1)	14.1 (8.3-23.1)	43.9 (31.8-56.7)
Age <1 month	25.4 (16.1-37.8)	86 (77.2-91.8)	55.6 (37.3-72.4)	62.7 (53.7-70.9)	14 (8.2-22.8)	74.6 (62.2-83.9)
LU ^b score	89,1 (78,2-94,9)	56,0 (45,3-66,1)	57,0 (46,4-66,9)	88,7 (77,4-94,7)	44,0 (33,9-54,7)	10,9 (5,1-21,8)


Cut-off score à 3,5

Cas clinique n°2

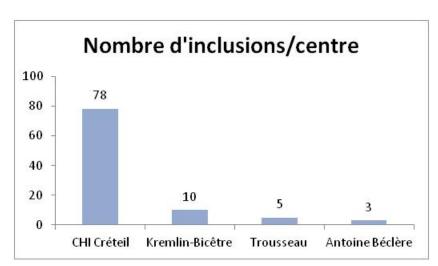
♂ 2 mois, 1ère bronchiolite VRS+ hospitalisé pour difficultés alimentaires.

Echographie pulmonaire devant une aggravation respiratoire et Oxygénodépendance.

Echographie pulmonaire: 2EIC + en antérieur (atteinte bilatérale)
7EIC + en postérieur dont condensation (atteinte bilatérale)
Evolution défavorable →VNI

Outil de dépistage du Syndrome thoracique aigu?

- ➤ Lésions de STA en échographie: Condensations (Territoires postéro-inférieurs +++) +/- épanchement pleural
- > Bonne corrélation images TDM versus échographie pulmonaire
- ➤ Meilleure sensibilité dans la détection des condensations (72% vs 44%) et des épanchements pleuraux (91 vs 33%)


Auteurs/Année	Origine	Nb patients	Type étude	Critères d'inclusions	Objectif principal	Se (%)	Sp (%)
Razazi et al. 2016	Française	41 (44 ACS)	Prospective Monocentrique	Patient drépano >18 ans avec STA + TDM thoracique : DT/Dyspnée/ Ano auscultatoire + nouvelle opacite sur RXT.	Comparaison des lesions pulmonaires TDM (Gold standard)/LUS/RXT - Détection de condensations - Détection d'un épanchement pleural	72% vs 44% 91% vs 33%	89% vs 95% 81% vs 73%
Daswani et al. 2016	Américaine	91 patients (116 épisodes fébriles)	Prospective Monocentrique	Patient drépano <21 ans admis pour fièvre et qui ont eu une RXT	- Detection d'un STA (Définition Radio- Clinique)	87%	94%
Cohen et al, 2020	Américaine	191	Prospective Bicentrique	Patient drépano < 21 ans admis pour STA d'emblée	- Detection du STA	88%	93%

Etude prospective multicentrique en cours

> Objectif principal: évaluer la sensibilité et la spécificité de l'échographie pulmonaire par rapport à la

radiographie pulmonaire dans le diagnostic du STA

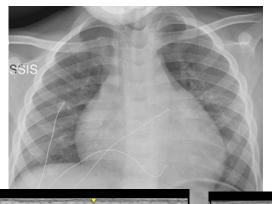
- Inclusion enfants drépanocytaires hospitalisés pour une CVO
- > Exclusion des STA d'emblée
- ➤ Radiographie pulmonaire: J0 et J3 systématique +/- si signes cliniques
- ➤ Echographie pulmonaire: J0,J1,J2,J3
- > 96 patients inclus

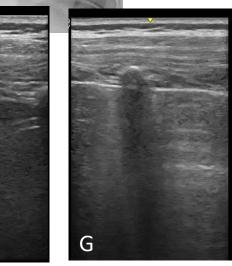
Objectif d'inclusion: 150 patients

Analyse Intermédiaire sur les 50 premiers patients inclus:

8 patients: STA + entre J2 et J3

L'échographie pulmonaire est pathologique pour tous les STA dès J0 ou J1




Admission

febrile, satO2= 94%,

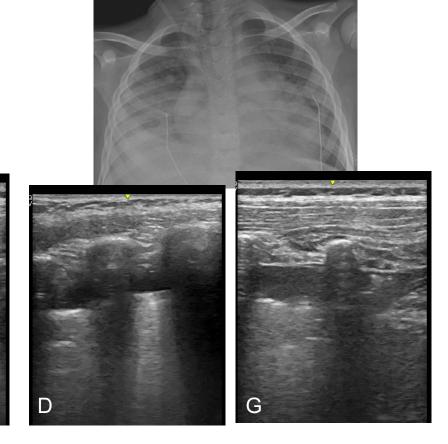
FR=25/min, EVA=10/10,

Auscultation normale

J1

SatO2: 96% AA, FR=32/min

Diminution du MV bilateral.

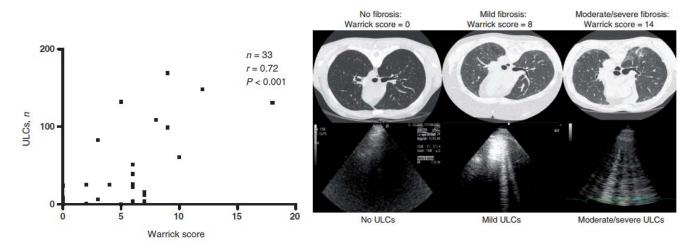

Algique +++

J2

SatO2: 100% AA, FR=27/min

Diminution du MV bilateral.

Algique +++


Intérêt de l'échographie pulmonaire dans les PID de l'enfant

- > TDM thoracique: Gold standard pour diagnostic et évaluation d'une PID
- => Irradiation répétée et dès le plus jeune âge

Bonne sensibilité et spécificité de l'échographie

Etudes	Nombre de patients	Gold standard	Se (%)	Sp (%)	VPP (%)	VPN (%)
Volpicelli et al 2006	LUS+	RXT	85,7	97,7	93	95,1
		Signes cliniques	85,3	96,8	90,1	95,1
Barskova et al 2013	LUS +: > 2 régions adjacentes + et si > 5 lignes B total	TDM thoracique	100	55	78	100
	LUS+: > 5 lignes B total		100	59	-	-
	LUS+: >20 Lignes B total		83	96	-	-
Moazedi-Fuerst et al 2014	Score échographique (Lignes B + anomalie pleural): 0 à 4	TDM thoracique	97.1	97.3	94.3	98.6
Cogliati et al 2014	Examen de 72 régions (28 ant et 44 post): LUS +: si > 10 lignes B total	TDM thoracique	92	56	-	-
	Méthodes simplifiées: Examen des 4 régions antérieures LUS +; ≥ 2 régions +		69	88	-	-
Mohammadi et al. 2014	Score échographique. LUS +: > 5 lignes B total	TDM thoracique	73.6	88.2	95.1	51.7
Sperandeo et al. 2015	LUS +: Ligne pleurale épaissie > 3mm ≻Entre 3 et 5mm ≻Entre 3.5 et 5mm > ≥ 5mm LUS +: >3 Lignes B total	TDM thoracique	80 74.3 90.1 94	99 99 90 95.2		

Syndrome interstitiel est quantifiable et bien corrélée au score scannographique de Fibrose pulmonaire

33 patients inclus avec sclérodermie

Intérêt de l'échographie pulmonaire dans les PID de l'enfant

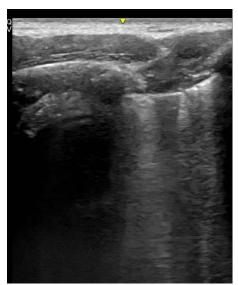
But de l'étude: Evaluation chez des enfants atteints de PID

- ✓ La faisabilité de l'échographie pulmonaire
- ✓ La correlation entre les images de l'échographie et de la TDM
- > 5 enfants suivis pour des PID de différentes étiologies à Trousseau
- Présence d'un syndrome interstitial diffuse:
- >3 lignes B par espace intercostal sur 2 regions adjacentes

Caractéristiques des patients inclus et résultats de leur dernière TDM


	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5
	Car	actéristiques des pat	ients		
Age (ans)	16	1,5	11	2,5	7 ans
Diagnostic	FPI	Mutation ABCA3	Hémosidérose pulmonaire idiopathique Traité	PAP mutation MARS	PAP
	Description des lésion	ıs pulmonaires sur de	ernière TDM thoraciq	ue	
Délai entre Dernière TDM et échographie pulmonaire (jours)	455	485	24	1	13 (avant la TDM
Verre dépoli	Diffus et bilatéral	Diffus et bilatéral	No	Diffus et bilatéral	Diffus et bilatéra
Condensations alvéolaires	Non	Non	Non	Multiples Bilatérales	Multiples Bilatérales
Epaississement des septas inter- alvéolaires	Bilateraux	Non	Non	Bilateraux	Bilateraux
Kystes sous-pleuraux ou intra- parenchymateux	Sous-pleuraux Bilatéraux	Sous-pleuraux et intra- parenchymateux bilatéraux	Non	Non	Non
Aspect en « rayon de miel »	Bilatéral	Non	Non	Non	Non
Epanchement pleural	Non	Non	Non	Non	Oui Bilatéral
Nodules ou micronodules pulmonaires	Non	Non	Micronodules centrolobulaires diffus	Non	Non

Description des images échographiques

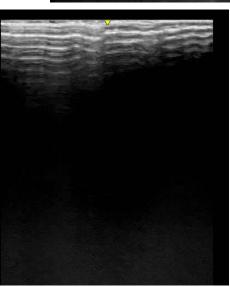

	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5
Syndrome interstitiel diffus	Oui	Oui	Non	Oui	Oui
Localisation prédominantes des lignes B	Diffus Régions antérieurs et latérales	Diffus Régions antérieures et latérales		Diffus Aspect « white lung » en antérieur et latéral	Diffus Aspect « white Iung »
Aspect hétérogène	Oui	Non	Non	Oui	Non
Aspect de la ligne pleurale	Irrégulière	Irrégulière	Normale	Irrégulière +++	Irrégulière +++
Condensations alvéolaires	Non	Non	Non	Oui, diffuses et sous- pleurales	Oui, diffuses et sous- pleurales
Epanchement pleural (épaisseur en cm)	Non	Non	Non	Non	Oui, bilatéral (0,35)

Etude pilote dans les pathologies interstitielles de l'enfant

16 ans, FPI

Patient 1

2 ans et demi avec PAP


Patient 4



18 mois, mutation ABCA3

Patient 2

Patient 5

Conclusion

- > Intérêt de l'échographie pulmonaire dans de multiples pathologies
- Continuité de l'examen Clinique
- ➤ Limites de l'échographie: examen de la périphérie du poumon
- > Réalisable directement au lit du malade, facilement et non irradiant
- ➤ Pré-requis: la formation +++

https://formation.gecho.fr/

celine.delestrain@chicreteil.fr

REVIEW ARTICLE

CURRENT CONCEPTS

Point-of-Care Ultrasonography

Christopher L. Moore, M.D., and Joshua A. Copel, M.D.

has been used by physicians for more than half a century to aid in diagnosis and guide procedures. Over the past two decades, ultrasound equipment has become more compact, higher quality, and less expensive, which has facilitated the growth of point-of-care ultrasonography — that is, ultrasonography performed and interpreted by the clinician at the bedside. In 2004, a conference on compact ultrasonography hosted by the American Institute of Ultrasound in Medicine (AIUM) concluded that "the concept of an 'ultrasound stethoscope' is rapidly moving from the theoretical to reality." This conference included representatives from 19 medical